The Mechanism of the Sarco/Endoplasmic Reticulum ATP-Driven Calcium Pump

Blue Waters Symposium Champaign, May 13, 2014

Avisek Das Benoît Roux

Department of Biochemistry and Molecular Biology

Calcium pump SERCA

- Sarco/endoplasmic reticulum Ca²⁺-ATPase (SERCA) is an integral membrane protein
- Plays important role in the relaxation of skeletal muscle
- Transfers Ca²⁺ ions from the cytosol of the muscle cell to the lumen of the sarcoplasmic reticulum
- Maintains a 10000 times concentration gradient at the expense of ATP hydrolysis

Architecture of the protein

- 994 amino acids
- Three cytoplasmic domains
 - Nucleotide binding domain, N (green)
 - Phosphorylation domain, P (blue)
 - Actuator domain A, (red)
- Ten transmembrane (TM) helices (M1-10)
- Two TM Ca²⁺ binding sites

Pumping cycle and structures

Objective and Importance of our project

Objective

- How do the transitions take place?
- How large and small scale motions are coupled?
- How information is transmitted over a long distance?

Importance

- Understanding the mechanism is of biomedical importance. SERCA is a drug target for several diseases e.g. heart failure
- Good model system for understanding the mechanisms of a large class of ion pumps called P-type ATPases

Specific goal: understanding occlusion

- Occlusion: ions can not escape from the binding sites to the cytoplasmic medium
- This is important for transporting ions against the concentration gradient

E1-2Ca²⁺-ATP (E1P-ADP) PDB ID: 1VFP

M1: Mauve M2:Orange

Computational strategy

- We like to simulate the transition at the all-atom level
- Brute-force molecular dynamics simulation is inadequate, e.g. after 500 ns the transition is not complete (Esponoza-Fonseca and Thomas PLoS One **6** e26936 (2011))
- We will employ a rare event method: string method with swarms of trajectory (Pan, Sezer and Roux J Phys Chem B 112 3432 (2008))
- Several steps
 - MD simulations of the end points
 - Construction of a CG pathway, where protein is represented as a C^{α} trace
 - Reconstruct all-atom pathway from the CG pathway
 - Refine the pathway using string method

Simulation of end states

- Crystal structures were solvated with ATP and Mg²⁺ ion. E1-2Ca²⁺ (PDB ID: 1SU4); E1-ATP-2Ca²⁺ (PDB ID: 1VFP)
- 480 POPC lipids, ~70,000 TIP3P water, 0.15 M KCl. Total number of atoms ~291,000
- CHARMM 36 force field and NAMD
 2.9
- 50 ns of simulation for each end state

CG pathway and all-atom reconstruction

- Protein is represented as a C^{α} trace
- Pathway was determined by the ANMPathway method

- 35 images in the CG pathway
- Steered MD is used for this purpose
- Image j+1 is prepared from image j with steering forces applied on the C^α atoms
- 500 ps of steered MD for a pair of consecutive images

http://anmpathway.lcrc.anl.gov/anmpathway.cgi

String method with swarms of trajectory

- Finds the "most probable transition path" between two minima on a free energy surface defined by a set of collective variables (CVs), $\mathbf{z} = \{z_1, z_2, \dots, z_n\}$
- Pathway is a sequence of discrete images: $\{\mathbf{z}^1, \mathbf{z}^2, \dots, \mathbf{z}^M\}$
- At each iteration every image is updated by adding a drift term $\mathbf{z}_{p+1}^k = \mathbf{z}_p^k + \Delta \mathbf{z}^k$
- The drift is the average drift calculated from short unbiased MD trajectories (i.e. swarms) launched from each image

$$\Delta \mathbf{z} = \overline{\mathbf{z}(\tau) - \mathbf{z}(0)}$$

 After updating the CVs, all-atom representation of each image is generated by constrained equilibrations

Massively parallel *NAMD* implementation

N = 35

K = 32

Total number of replicas = N x K = 1120

Single production run can take up ~25% of *Blue Waters*

Dr. Mikolai Fajer

Convergence of string iterations

- Choice of CVs: Cartesian positions of all the C^{α} atoms in the cytoplasmic domains and M1-M6 helices. Several key side-chains in M1-M2 helices and in N, A and P domains. Total: 856 Cartesian positions
- 10 ps of swarm and 10 ps of constrained equilibration
- 109 iterations

Results

Result: role of key side chains

Due to upward movements of M1 and M2 and bending of M1 hydrophobic side chains block the ion pathway

M1: Mauve

M2:Orange

Ca²⁺: Purple spheres

Space-filling

representation: Phe57

Val62 Leu65 (M1); lle94

Leu97 Leu98 (M2)

Prediction: formation of non-native contact

Non-native contact: Two residues that are far away in the end states but come close during the transition

Probing non-native contact by metal bridge

Mutation to negatively charged Cys and Cd²⁺ ion

Metal bridge formation after restrained and free simulations

Probing non-native contact by metal bridge

Unbiased MD of wild type and double mutant with metal bridge

Conclusion

- We have simulated the conformational transition responsible for occlusion of Ca²⁺ ions
- The N domain moves freely at the initial stage of the transition which suggests that cytoplasmic domains can exist in more compact conformations in solution
- Mechanism: Large scale motions in the cytoplasmic domains cause the upward motions of M1 and M2 followed by bending of M1 which result in repositioning and flipping of key side chains
- Simulated pathway predicted formation of non-native contact which was probed by Cd bridge formation.
 Possible target for cross-linking experiment

Acknowledgement

- Prof. Benoît Roux
- Mikolai Fajer, Sunhwan Jo, Yilin Meng
- Roux lab members
- Funding: NIH Grant U54-GM087519
- Great Lakes Consortium for Petascale Computation for allocation on Blue Waters
- Robert Brunner of NCSA/Blue Waters

Extreme Science and Engineering Discovery Environment